De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Uniform

Ik moet voor een uniform discrete verdeling bewijzen dat $\eqalign{m=\frac{n+1}{2}}$ en dat $\eqalign{s^2=\frac{n^2-1}{12}}$ de kansfunctie is $\eqalign{f(i)=\frac{1}{n}}$

Colman
Student universiteit België - vrijdag 18 december 2015

Antwoord

Ik zou met de definities beginnen:
$$
m = \sum_{i=1}^n i\cdot P(X=i) = \sum_{i=1}^n i\cdot f(i)
$$
en
$$
s^2= \sum_{i=1}^n (i-m)^2\cdot P(X=i) = \sum_{i=1}^n (i-m)^2\cdot f(i)
$$
en deze netjes uitwerken.
Je zult zien dat je onderweg de volgende twee sommen tegenkomt: $1+2+\cdots+n$ en $1^2+2^2+\cdots+n^2$; die heb je ongetwijfeld wel eens eerder gezien.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 19 december 2015
 Re: Uniform  



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3