De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Moeilijke logaritme

Geachte,

Deze logaritme moet ik zonder rekenmachine oplossen, maar hoe doe je dit? Wilt u de tussenstappen uitleggen?

125log 533
(125 is het grondtal)

en

log(10√10)/log 0,1

Alvast bedankt!

Imaad
3de graad ASO - woensdag 16 november 2016

Antwoord

Voor de eerste opgave heb je regel L2 nodig van de rekenregels voor logaritmen.

Je krijgt dan:

$\eqalign{
{}^{125}\log (5^{33} ) = \frac{{{}^5\log (5^{33} )}}
{{{}^5\log (125)}}
}$

Dan kan je wel verder denk ik. Denk goed na over het waarom en hoe!

Bij de tweede opdracht is het handig om de getallen te schrijven als machten van 10. Je krijgt dan:

$\eqalign{
\frac{{\log (10\sqrt {10} )}}
{{\log (0,1)}} = \frac{{\log \left( {10^{1\frac{1}
{2}} } \right)}}
{{\log (10^{ - 1} )}}
}$

Dan kan je wel verder denk ik. Denk goed na over het waarom en hoe!

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 16 november 2016



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3