De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Wortel in limiet komt terug

ik zou de limiet voor x$\to$1 van de functie (3x2-4x+1) / (2$\sqrt{ }$(x3-2x2+x)) moeten berekenen.
Omdat de primitieve daar weldegelijk een minimum heeft zou de limiet dus naar 0 moeten gaan... maar ambachtelijk kan ik het niet berekenen omdat de limiet 0/0 blijft uitkome (ook na een aantal keer l'Hopital)
alvast bedankt!

Sebast
Student universiteit België - dinsdag 12 december 2006

Antwoord

Hallo

De teller ontbinden geeft : (3x-1)(x-1)
De noemer ontbinden geeft : 2$\sqrt{ }$[x(x-1)2]

Als x$>$1, dan $\sqrt{ }$(x-1)2 = x-1
Na schrappen van x-1 in teller en noemer wordt de breuk
3x-1/2$\sqrt{ }$x en vind je als rechterlimiet: 1

Als x$<$1, dan $\sqrt{ }$(x-1)2 = -(x-1)
Na schrappen van x-1 in teller en noemer wordt de breuk
3x-1/-2$\sqrt{ }$x en vind je als linkerlimiet: -1

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 12 december 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3