De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Som van cos2 +/- 120°

 Dit is een reactie op vraag 14550 
Uhm erg bedankt hoor! Maar dat hebben we nog niet gezien, we zouden normaal gebruik moeten maken van de optellingsformules. Kan ik deze gewoon toepassen als er cos2 staat of niet?

Robby
3de graad ASO - dinsdag 23 september 2003

Antwoord

Nope...

Hiermee moet je het doen:
cos(a+b)=cos(a).cos(b)-sin(a).sin(b),
zodat
cos2(a+b)=
(cos(a).cos(b)-sin(a).sin(b))2=
cos2(a).cos2(b)-2.cos(a).cos(b).sin(a).sin(b)+sin2(a).sin2(b)...
En zo heb je 2 kanjers: eens +120° en eens -120°.

Not your lucky day

Maar... Misschien kan je het slim spelen en eerst die som-formules gebruiken om te bewijzen dat
cos(2x)=cos(x+x)=cos(x).cos(x)-sin(x).sin(x)=cos2(x)-sin2(x)=cos2(x)-(1-cos2(x))=2.cos2(x)-1,
zodat 2.cos2(x)=1+cos(2x)... En dat is de formule die ik in mijn eerder antwoord (3 keer) gebruikte... Een stuk minder rekenwerk toch; en ook met de som-formules.

Groetjes en goede moed,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 23 september 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3