Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 90751 

Re: Differentiëren van een natuurlijke logaritme

Tot daar ben ik wel geraakt maar ik snap niet hoe ik die 1e term kan uitwerken? Is dat maal het omgekeerde ?

Melike
Student universiteit België - donderdag 22 oktober 2020

Antwoord

Je krijgt:

$
\eqalign{
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \left( {\frac{{1 \cdot \left( {1 - x} \right) - (1 + x) \cdot - 1}}
{{\left( {1 - x} \right)^2 }}} \right) \cr
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \left( {\frac{{1 - x + 1 + x}}
{{\left( {1 - x} \right)^2 }}} \right) \cr
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \frac{2}
{{\left( {1 - x} \right)^2 }} \cr
& f'(x) = \frac{{1 - x}}
{{1 + x}} \cdot \frac{2}
{{\left( {1 - x} \right)^2 }} \cr}
$

Je vermenigvuldigt de teller en noemer van de eerste term met $1-x$ en dan schiet het al lekker op.

WvR
donderdag 22 oktober 2020

 Re: Re: Differentiëren van een natuurlijke logaritme 

©2001-2024 WisFaq