De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Bewijzen

Bewijs equipotentie

Beste

Ik heb morgen examen en er is een vraag van de oude examens waar ik niet op uit kom. Ik heb ze in de bijlage gezet, ik zoek naar vraag b). Ik weet dat je equipotentie kan bewijzen door een injectie in beide richtingen te vinden of door simpelweg een bijectie tussen de twee te vinden, maar ik kom op niks terecht. Is er een andere manier om dit aan te pakken of is het blijven verder zoeken?
Alvast bedankt

Jacob
17-1-2024

Antwoord

Printen
Gebruik het gegeven: er is een $\sigma$ met $\sigma\circ f=g\circ\sigma$.
Bewijs met behulp hiervan: als $f(x)=x$ dan $g(\sigma(x))=\sigma(x)$ en omgekeerd: als $g(x)=x$ dan $f(\sigma^{-1}(x))=\sigma^{-1}(x)$.
Concludeer dat $\sigma$ een bijectie is tussen de vaste punten van $f$ en die van $g$.

kphart
17-1-2024


Inleiding Analyse Opgave 1.35

Ik krijg deze vraag niet door, ik weet niet waar ik moet beginnen en hoe ik de voorwaarde dat |x| $>$ 1 moet toepassen?

Louis
11-2-2024

Antwoord

Printen
Als je de ongelijkheid oplost zul je zien dat de oplossing gelijk is aan:

$
x \lt - 1 \vee x \ge 1
$

En dat is dan precies gelijk aan $
\left| x \right| \gt 1
$

Helpt dat?

WvR
11-2-2024


Inleiding Analyse Opgave 1.37

Mijn probleem met de volgende vraag is dat ik de theorie van open verzamelingen begrijp maar zodra ik het moet toepassen begrijp ik niks meer, hoe pak ik zo'n vraag aan?

Louis
11-2-2024

Antwoord

Printen
Als je theorie van de open verzamelingen echt begrijpt weet je dat dit niets met open verzamelingen te maken heeft, maar met niet meer dan de driehoeksongelijkheid in $\mathbb{R}^n$.
(OK de vraag tussen haakjes heeft met de definitie van de afstand te maken.)

1. omdat $a\neq b$ is er een $i$ zó dat $a_i\neq b_i$ en dus
$$d(a,b)=\sqrt{\sum_{k=1}^n(a_k-b_k)^2}\ge |a_k-b_k| > 0
$$2. Neem $x\in B(a,r_1)\cap B(b,r_2)$, dan geldt dus $d(a,x) < r_1$ en $d(x,b) < r_2$. Pas de driehoeksongelijkheid toe:
$$d=d(a,b)\le d(a,x)+d(x,b) < r_1+r_2
$$

kphart
12-2-2024


Bewijs stelling Smirnov-Nagata

Beste professor Hart,

Ik was aan het lezen over metriseerbaarheid en de stelling van Smirnov-Nagata en heel toevallig vond ik online een pdf-bestand waarin u deze stelling bewijst: https://fa.ewi.tudelft.nl/~hart/37/onderwijs/topologie/dictaat-vu-2002.pdf (dit is in hoofdstuk 9, stelling 9.16).

Ik heb 2 vragen hierbij:

1)In de opgave zegt u X is metriseerbaar als en slechts als X regulier is met een σ-lokaal eindige basis. Maar dan in het bewijs veronderstelt u dat X een T3-ruimte is dus regulier+T1 met een σ-lokaal eindige basis. Moest er in de opgave T3 staan?

2)Op het einde van het bewijs zegt u zij A gesloten en x niet in A, dan bestaan er B,W zodanig x $\in $ B $\subseteq $ sluiting(B) $\subseteq $ W $\subseteq $ X\A, waarom kunnen we zulke B,W vinden?

Alvast bedankt.

Rafik
16-2-2024

Antwoord

Printen
1) Zie pagina 37, in definitie 5.14 spreken we af dat regulier gelijk is aan $T_3+T_1$.
2) Zie ook pagina 37, Propositie 5.17: de $W$ is er omdat $\mathcal{B}$ een basis is en dan levert propositie 5.17 de kleinere $B$ (eerst een $V$ en dan weer een $B\in\mathcal{B}$).

kphart
16-2-2024


home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3