WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bewijs equipotentie

Beste

Ik heb morgen examen en er is een vraag van de oude examens waar ik niet op uit kom. Ik heb ze in de bijlage gezet, ik zoek naar vraag b). Ik weet dat je equipotentie kan bewijzen door een injectie in beide richtingen te vinden of door simpelweg een bijectie tussen de twee te vinden, maar ik kom op niks terecht. Is er een andere manier om dit aan te pakken of is het blijven verder zoeken?
Alvast bedankt

Jacob
17-1-2024

Antwoord

Gebruik het gegeven: er is een $\sigma$ met $\sigma\circ f=g\circ\sigma$.
Bewijs met behulp hiervan: als $f(x)=x$ dan $g(\sigma(x))=\sigma(x)$ en omgekeerd: als $g(x)=x$ dan $f(\sigma^{-1}(x))=\sigma^{-1}(x)$.
Concludeer dat $\sigma$ een bijectie is tussen de vaste punten van $f$ en die van $g$.

kphart
17-1-2024


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#98023 - Bewijzen - Student universiteit België