De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Inverse kansdichtheidGegeven is dat X een continue kansvariabele is. Gevraagd wordt om het volgende aan te tonen: de kansdichtheid van 1/X gegeven y is gelijk aan (1/x2) vermenigvuldigd met de kansdichtheid van X gegeven 1/x als argument, voor alle x ongelijk aan nul. Het lukt mij wel voor het geval dat X waarden aanneemt die strikt positief zijn, dan is het werken vanuit de verdelingsfunctie en dan differentiëren. Echter kan X dus alle waarden van de reëele rechte aannemen (nul is voor dit geval uitgezonderd). Hulp is gewenst. AntwoordVoor negatieve $x$ kun je hetzelfde doen: $P(\frac1X\le x)=P(\frac1x\le X<0)=a-P(X\le\frac1x)$, waarbij $a=P(X<0)$.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|