De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Snijpunt van poolkrommen

 Dit is een reactie op vraag 85168 
Maar wanneer ik dit doe kom ik meestal niet alle snijpunten uit en ben ik dus ergens oplossingen kwijt gespeeld. Enig idee wat er fout loopt dan?

Sjoerd
Student universiteit België - zondag 29 oktober 2017

Antwoord

Bij je voorbeeld zou ik beginnen met $\sin\theta=\cos2\theta$ op te lossen.
(oplossingen $\frac\pi6$, $\frac{5\pi}6$ en $\frac{3\pi}2$). Daarnaast moet je rekening houden met de mogelijkheid $r=0$, die kan voor verschillende $\theta$s optreden: $0$ en $\pi$ bij $r=\sin\theta$, en $\frac{k\pi}4$ ($k=1,3,5,7$) bij $r=\cos2\theta$.
Sommige boeken eisen dat $r\ge0$, dus daar moet je rekening mee houden; andere boeken laten ook negatieve $r$ toe, en dan ktijg je soms wat meer oplossingen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 29 oktober 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3