De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Deelruimten
Die voorwaarden voor directe som zijn er toch niet? Dit is toch altijd het geval aangezien W1 doorsnede W2={0}? AntwoordDie voorwaarden zijn er altijd; je moet kijken of er an voldaan is. Aan de eerste is inderdaad eenvoudigerswijs voldaan. Het werk zit dus in de tweede. Als $x\in W\cap(W_1\oplus W_2)$ dan zeker $x\in W_1\oplus W_2$. Dan is $x$ op een unieke manier te schrijven als $w_1+w_2$ met $w_i\in W_i$ $i=1$, $2$). De vraag is nu of $w_1\in W\cap W_1$ en $w_2\in W\cap W_2$.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|