De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Norm met som

We definiëren ||.||som als volgt:
- Voor xÎn definiëren we
||x||som=|x1|+...+|xn|
- Als A een n bij n matrix is, definiëren we
||A||som = SOM|Aij| (met de som voor i en j van 1 tot n)

Stel dan A en B twee n bij n matrices, bewijs dan
||AB||som = ||A||som . ||B||som

Zij C een n bij n matrix, die we identificeren met een lineaire afbeelding van n naar n. Dan is
||C(x)||som = ||C||som ||x||som voor alle xÎn



De bedoeling is nu om dit lemma te bewijzen. Ik wou dit doen door A=(aij) te stellen en B=(bij), maar ik zit al dadelijk vast. Daarom mijn vraag: hoe bewijs ik dit? Hopelijk kunnen jullie mijeen antwoord bieden.

Inge V
Student universiteit België - zaterdag 23 december 2006

Antwoord

Dergelijke ongelijkheden zijn steeds gebaseerd op meer fundamentele ongelijkheden. Hier is de basisongelijkheid dat de absolute waarde van een som nooit groter kan zijn dan de som van de absolute waarden (ook wel de driehoeksongelijkheid genoemd, als het aantal termen gelijk is aan twee). Ik geef als voorbeeld aan hoe je het eerste deel kan bewijzen.

||AB||
= SOM(i,j) |(AB)_ij|
= SOM(i,j) | SOM(k) A_ik B_kj | (algemeen element van een matrixprodukt)
SOM(i,j) SOM(k) |A_ik B_kj| (basisongelijkheid)
= SOM(i,j) SOM(k) |A_ik|.|B_kj| (1)

Anderzijds is

||A||.||B||
=SOM(i,j)|A_ij| SOM(k,l)|B_kl|
=SOM(i,j) SOM(k,l) |A_ij|.|B_kl| (2)

Dan volgt dat ||AB|| (1) (2) = ||A||.||B||. Probeer zelf te begrijpen waarom (1)(2) (schrijf de uitdrukkingen desnoods eens op voor n=2).

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 27 december 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3