De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Ruwe en centrale momentenHallo, AntwoordJe kunt de variantie in die twee momenten uitdrukken: zoals je al opmerkt geldt m'1=X. Werk nu de variantie, m2 dus, netjes uit: er komt (1/n)som((Xi-X)2)=(1/n)(som(X2i)-2Xsom(Xi)+X2) de som loopt van 1 tot en met n dus er komt (1/n)som(X2i)-2X(1/n)som(Xi)+X2 = m'2-(m'1)2.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|