De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiaal vergelijkingen

y'-5y= e5x

Het stagneert bij mij na de algemene oplossing.
Help me tot de homogene en de particuliere oplossing te komen !

Lex
Student hbo - vrijdag 2 juli 2004

Antwoord

dag Lex,

Voor de homogene oplossing zul je gevonden hebben:
y = C·e5x
Dus het rechterlid van de vergelijking is een deel van de homogene oplossing.
Dat is nu jammer, want dat betekent dat we voor de particuliere oplossing iets anders zullen moeten vinden!
Een bekende truc is: variatie van constanten (contradictio in terminis).
Kies yp = C(x)·e5x
Dan is yp' = C'(x)·e5x + C(x)·5·e5x
Invullen in de vergelijking geeft:
C'(x)·e5x + C(x)·5·e5x - 5·C(x)·e5x = e5x
Û C'(x) = 1, ofwel C(x) = x + C1
waarmee de oplossing yp bekend is.
groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 2 juli 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3