\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Integralen

Hoe bereken je òsin(lnx)dx?
Ik probeerde al vanalles te substitueren, en partiële integratie lijkt me hier niet mogelijk omdat het geen product is...

En ò(1+sin(2x))/(sin2x) dx?
Geen idee hoe ik daar moet aan beginnen...
Kan iemand mij op weg helpen?
Thx!

E
Student Hoger Onderwijs België - vrijdag 18 november 2005

Antwoord

1)
Noem u=ln(x) oftewel x=eu, dan dx=eudu
Je krijgt dan òeusin(u)du. Daarna kun je twee keer partiele integratie gebruiken zodat je krijgt 1/2(eusin(u)-eucos(u)), daarna u=ln(x) en eu=x terug substitueren.

2)
(1+sin(2x))/(sin2x)=1/sin2(x)+sin(2x)/sin2(x)=1/sin2(x)+sin(2x)/(1/2-1/2cos(2x)).
ò1/sin2(x)dx is een bekende.
Voor òsin(2x)/(1/2-1/2cos(2x))dx kun je de substitutie u=1/2-1/2cos(2x) gebruiken.


vrijdag 18 november 2005

 Re: Integralen 

©2001-2024 WisFaq