De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
DeterminantenBeschouw een functie A: R$\to$R^(n·n): t$\to$A(t). Voor elke t $\in$ R is A(t) dus een (n·n)-matrix waarvan de matrixelementen, we noteren ze met ai,j(t) (met i,j= 1,...,n) van t afhangen. Met de functie A corresponderen er dus (n·n) functies ai,j: R$\to$R.We nemen aan dat elk van die functies afleidbaar is. Beschouw nu de functie D: R$\to$R: t$\to$D(t) = det(A(t)). Toon aan dat voor alle t$\in$ R geldt dat: AntwoordDit bewijs je met behulp van de productregel voor differentieren.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|