De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

6. Poisson-verdeling

De Poisson-verdeling is een limiet geval van de binomiale verdeling (n groot en np vast). De kans op een bepaalde gebeurtenis bereken je met de volgende formule:

$
\Large P(X = k) = e^{ - \lambda } \cdot \frac{{\lambda ^k }}{{k!}}
$

Deze verdeling wordt alleen bepaald door de verwachtingswaarde $\lambda$. De standaardafwijking is gelijk aan de wortel uit de verwachtingswaarde.

$
\Large \sigma = \sqrt \lambda
$

Voorbeeld

Tabel 1
Aantal dodelijke ongelukken
veroorzaakt door een trap
van een paard
van 10 Pruisische legerkorpsen
in een periode van 20 jaar.
(1875-1894)
(L.v.Bortkiewicz,
Das Gesetz der kleinen Zahlen,
Leipzig, 1898)
Aantal jaren met x doden per korps
x Gemeten Berekend
0 109 109
1 65 66
2 22 20
3 3 4
4 1 1
$>$5 0 0

In bovenstaande tabel wordt eerst het totaal aantal ongelukken met dodelijke afloop berekend, dat is 122 (65+2·22+3·3+4·1). Het totaal aantal jaren is 200. Dus de kans op een ongelukje met duidelijke afloop is 0,61. Je kunt dan de kansen berekenen met:

$
\Large P(X = k) = e^{ - 0,61} \cdot \frac{{0,61^k }}{{k!}}
$

Tabel 2
k P(X=k)
0 0,543
1 0,331
2 0,101
3 0,021
4 0,003
$>$5 0,000

Vermenigvuldigen van de rechter kolom in tabel 2 met 200 levert de rechter kolom op in tabel 1.

Voorbeeld

Het aantal telefoonoproepen per minuut bij de dienst "Inlichtingen" heeft een Poisson-verdeling tijdens de drukke uren. Als het gemiddeld aantal oproepen 5 per minuut bedraagt bereken dan de kans op 0,1,2,3 en meer dan 3 per minuut.

Uitwerking

Met $\lambda$=5 invullen in de formule
$
P(X = k) = e^{ - \lambda } \cdot \frac{{\lambda ^k }}{{k!}}
$
kan je uitrekenen wat de kansen zijn op 0,1,2,3,.. per minuut.

P(X=0)=e-5·50/0!=0,0067
P(X=1)=e-5·51/1!=0,0337
P(X=2)=e-5·52/2!=0,0842
Enzovoort....

P(X>3)=1-P(X=0)-P(X=1)-P(X=2)-P(X=3)
(antwoord: 0,735)

Voorbeeld

In een bepaald gebied zijn er gemiddeld 4 blikseminslagen per jaar. Bereken de kans op 0,1,2,3,4,5,6 en meer dan 6 blikseminslagen per jaar.

Uitwerking

Met $\lambda$=4 en de formule
$
P(X = k) = e^{ - \lambda } \cdot \frac{{\lambda ^k }}{{k!}}
$
kan je de volgende kansen uitrekenen:

P(X=0)=e-4·40/0!
P(X=1)=e-4·41/1!
P(X=2)=e-4·42/2!
P(X=3)=e-4·43/3!
P(X=4)=e-4·44/4!
P(X=5)=e-4·45/5!
P(X=6)=e-4·46/6!

...en P(X>6)=1-P(0)-P(1)-P(2)-P(3)-P(4)-P(5)-P(6)
(antwoord: 0,111)

Poisson-verdeling

$\lambda$=
k=
P(X=k)=
P(X<=k)=
P(X>k)=

Zie ook:

F.A.Q.


home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3