De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Ontbinden in factoren

Hallo,

In mijn wiskundeboek staat de volgende opgave:

Vind de vier nulpunten van de polynoom z4+4.
Gebruik deze nulpunten daarna om z4+4 te ontbinden in kwadratische factoren met echte coëfficiënten.

Ik heb de nulpunten al gevonden. De nulpunten zijn:
1+i; -1+i; -1-i; 1-i

Alleen heb ik moeite om in te zien hoe ik hiermee de kwadratische factoren moet maken.

Erwin
Student universiteit - vrijdag 27 augustus 2021

Antwoord

Mooi, denk nou eens aan (x-2)(x+2) = x2-4. Die losse x valt eruit.
Op dezelfde manier kun je die i wegkrijgen. Gebruik de nulpunten en even goed nadenken welke tweetallen je samen neemt zodat de losse i eruit valt.

(z-(1+i))(z-(1-i))= z2-(1+i)·z-(1-i)z+(1+i)(1-i) = z2-2z+2

Nu die andere twee:
(z-(-1+i))(z-(-1-i)) = z2+2z+2

Dus z4+4 is te schrijven als (z2-2z+2)(z2+2z+2) Ga maar na.

Met vriendelijke groet
JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 27 augustus 2021



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3