De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Een differentiaalvergelijking oplossen

Hoe los je de DV f'(x)+3f(x)=1 op?
Ik heb problemen met die 1

nico v
Docent - maandag 8 februari 2021

Antwoord

Het is een lineaire vergelijking; die gaat meestal in drie stappen.
1. Los de homogene op: $f'+3f=0$ (algemene oplossing $f_h(x)=Ce^{-3x}$, met $C$ een vrij te kiezen constante)
2. Zoek één (particuliere) oplossing $f_p$ van de vergelijking zelf; hier kun je met een scheef oog zien dat de constante functie $f_p(x)=\frac13$ een oplossing is.
3. Combineren, wegens de lineariteit is elke oplossing van de vorm $f(x)=f_p(x)+f_h(X)$, dus de algemene oplossing is $f(x)=\frac13+Ce^{-3x}$, met $C$ vrij te kiezen (die hangt meestal van een beginvoorwaarde af).

Ad 2: daar zijn ook gerichte methoden voor: variatie van constante (probeer $f_p$ van de vorm $C(x)\cdot e^{-3x}$, na invullen komt er een primitiveerprobleem voor $C'$), of integrerende factor (vermenigvuldig de hele vergelijking met $e^{3x}$, en herken links de afgeleide van $f(x)\cdot e^{3x}$, dan heb je weer een primitiveerprobleem).

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 8 februari 2021



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3