De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Invariante verhouding projectieve meetkundeLaat A, B, C en D punten op één lijn zijn in Pn. Schrijf de bijbehorende vectoren in Rn+1 als kleine letters a,b,c en d. Deze vectoren liggen dus in één vlak. Schrijf $c = κ_0 a + λ_0 b$ en $d = κ_1 a+ λ_1 b$. Dan geldt dat de verhouding (ABCD) gedefinieerd is als: $(λ_0 / κ_0 · (κ_1 / λ_1)$. Bewijs nu dat: (ABCD) = (CDAB). AntwoordSchrijf ook $a=\alpha_0 c+\beta_0 d$, en $b=\alpha_1 c+\beta_1d$. Stop dit in $c=\kappa_0 a+\lambda_0b$ en $d=\kappa_1a+\lambda_1b$ en werk het helemaal uit zó dat je dingen van de vorm $c=Kc+Ld$ en $d=Mc+Nd$. Dan moet $L=0$ en $M=0$.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|