De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Een isometrie van positieve reële lijn naar zichzelf
Dankuwel. Het klopt dus dat alle $x$ opschuiven dus ik neem aan dat de surjectiviteit eis verloren gaat. Echter lukt het me nog steeds niet om een concrete $x$ aan te wijzen om te laten zien dat het met dit element fout gaat (om een tegenspraak af te leiden). AntwoordJe weet wat de vorm van $f$ moet zijn: er is een vaste $c$ zó dat $f(x)=x+c$ voor alle $x$. Uit het gegeven blijkt dan $c\ge0$. Verder geldt voor elke $x$ dat $x>0$ en dus $f(x)>c$.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|