Loading jsMath...
 

De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Berekenen van een goniometriche integraal

 Dit is een reactie op vraag 88550 
ja ik had beter een tussenstap kunnen nemen:
=integraal(t-3)dt(van \frac{\pi}{6} tot \frac{\pi}{3})
=[1/2t-2] van \frac{\pi}{6} tot \frac{\pi}{3}
=[1/2(cos-2)x van \frac{\pi}{6} tot \frac{\pi}{3}
=[1/2(cos-2)\frac{\pi}{3}-{1/2(cos-2)\frac{\pi}{6}
=[(2)-(3/8)]=1 5/8
maar dit is ook geen 1 1/3

mboudd
Leerling mbo - zondag 6 oktober 2019

Antwoord

Beste mboudd,

We hebben \cos(\frac{\pi}{6})=\frac 12 \sqrt{3} dus \cos^2(\frac{\pi}{6})=\frac 34, waarna \cos^{-2}(\frac{\pi}{6})=\frac 43 en \frac 12 \cos^{-2}(\frac{\pi}{6})=\frac 23 en niet \frac 38. En dan klopt het.

Met vriendelijke groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 6 oktober 2019



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2025 WisFaq - versie 3

eXTReMe Tracker - Free Website Statistics