De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte tussen krommen

Ik heb een vraag ivm met het berekenen van een oppervlakte tussen krommen. Meer bepaald: ik heb een kromme (r=f(o)=2cos(o/2)) en een cirkel x2 + y2=1.
Ik weet hoe je de snijpunten van beide berekent en bij deze kom ik uit: 2$\pi$/3 en -2$\pi$/3.
Maar nu zit ik vast... Men vraagt het oppervlak van het gebied binnen de kromme en buiten de eenheidscirkel. Moet ik dit doen adh van de integraal specifiek voor een oppervlakte met poolcoordinaten?
Alvast bedankt!

Emma
3de graad ASO - zondag 22 januari 2017

Antwoord

Ja, je moet alles in poolcoördinaten doen:
$$
\int_{-\frac23\pi}^{\frac23\pi}\int_1^{2\cos\frac12\alpha}r\,\mathrm{d}r\,\mathrm{d}\alpha
$$

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 22 januari 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3