De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Kettingregel bij samengestelde functies

 Dit is een reactie op vraag 46047 
Hallo,

In welke delen moet ik de volgende som opsplitsen? bij het vorige voorbeeld vind ik het vrij duidelijk, maar zelf lukt mij het niet om een goede formule op te stellen voor de volgende vergelijking:
$$0{,}6\cos x + \sqrt{0{,}3^2-\left(0{,}6\sin x-0{,}15 \right)^2}$$Ik heb al meerdere uren zitten in het oplossen van deze vergelijking maar het lukt mij maar niet..

Guus
Student hbo - dinsdag 3 januari 2017

Antwoord

Beste Guus,

Er staat een som dus je kan in elk geval de afgeleide van beide termen apart bepalen; die van de eerste term is eenvoudig.

De tweede term noem ik $f(x)$ en is een samengestelde functie van de vorm $\sqrt{g}$ met $g(u)=0{,}3^2-u^2$ en $u(x)=0{,}6\sin x -0{,}15$.
Nu is volgens de kettingregel:
$$f'(x) = \frac{\mbox{d}f}{\mbox{d}x} = \frac{\mbox{d}f}{\mbox{d}g}\frac{\mbox{d}g}{\mbox{d}u}\frac{\mbox{d}u}{\mbox{d}x}$$Kan je de afzonderlijke afgeleiden bepalen en met deze regel samenstellen?

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 4 januari 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3