Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 46047 

Re: Kettingregel bij samengestelde functies

Hallo,

In welke delen moet ik de volgende som opsplitsen? bij het vorige voorbeeld vind ik het vrij duidelijk, maar zelf lukt mij het niet om een goede formule op te stellen voor de volgende vergelijking:
$$0{,}6\cos x + \sqrt{0{,}3^2-\left(0{,}6\sin x-0{,}15 \right)^2}$$Ik heb al meerdere uren zitten in het oplossen van deze vergelijking maar het lukt mij maar niet..

Guus
Student hbo - dinsdag 3 januari 2017

Antwoord

Beste Guus,

Er staat een som dus je kan in elk geval de afgeleide van beide termen apart bepalen; die van de eerste term is eenvoudig.

De tweede term noem ik $f(x)$ en is een samengestelde functie van de vorm $\sqrt{g}$ met $g(u)=0{,}3^2-u^2$ en $u(x)=0{,}6\sin x -0{,}15$.
Nu is volgens de kettingregel:
$$f'(x) = \frac{\mbox{d}f}{\mbox{d}x} = \frac{\mbox{d}f}{\mbox{d}g}\frac{\mbox{d}g}{\mbox{d}u}\frac{\mbox{d}u}{\mbox{d}x}$$Kan je de afzonderlijke afgeleiden bepalen en met deze regel samenstellen?

mvg,
Tom

td
woensdag 4 januari 2017

©2001-2024 WisFaq