De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Raaklijnen aan een cirkel

 Dit is een reactie op vraag 77708 
Niet echt...
Voor het gebruik van de discriminant heb je toch $ax^2+by+c=0$ nodig? Hoe kom je daaraan vanuit wat er nu staat?

jantje
2de graad ASO - zondag 28 februari 2016

Antwoord

Voor wat betreft $10x^2+2(3b-4)x+b^2-2b-8=0$ weet je nu de waarden voor $a$, $b$ en $c$. Uitgedrukt in die andere $b$.

$a=10$, $b=2(3b-4)$ en $c=b^2-2b-8$

Waarbij de $b$'s aan de rechterkant andere $b$'s zijn dan die aan de linker kant...

$D=b^2-4ac$ geeft:

$D=(2(3b-4))^2-4\cdot10\cdot(b^2-2b-8)$

Uitwerken en oplossen geeft dan twee mogelijke waarden voor $b$.

Lukt dat?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 28 februari 2016
 Re: Re: Raaklijnen aan een cirkel 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3