|
|
\require{AMSmath}
Oneindige reeksen en partiële sommen
Beste wisfaq, Zij sn=a0+a1+...+an (1-x)SOM[sn·xn]=((1-x)2)SOM[(s0+s1+...+xn)xn], beide sommen gaan van n=0 tot oneindig. Ik begrijp niet waarom (1-x)SOM[sn·xn] gelijk is aan ((1-x)2)SOM[(s0+s1+...+xn)xn]. Als ik de rechterkant uitwerk zie ik dat het waar maar ik begrijp niet hoe je dit bepaalt. Groeten, Viky
viky
Iets anders - dinsdag 24 november 2015
Antwoord
In het algemeen kun je $(1-x)\sum_{n=0}^\infty p_nx^n$ uitschrijven en omwerken tot $p_0+\sum_{n=1}^\infty(p_n-p_{n-1})x^n$. Als je dan bijvoorbeeld $p_n=\sum_{i=0}^ns_i$ neemt geldt $p_n-p_{n-1}=s_n$ en dus $(1-x)\sum_{n=0}^\infty(\sum_{i=0}^ns_i)x^n=s_0+\sum_{n=1}^\infty s_nx^n$. Je begint dus eigenlijk met $(1-x)\sum_{n=0}^\infty p_nx^n=p_0+\sum_{n=1}^\infty(p_n-p_{n-1})x^n$ en experimenteert met verschillende waarden voor de $p_n$.
kphart
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 24 november 2015
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|