|
|
\require{AMSmath}
Re: Algebraïsch buigpunten bepalen
Hallo, Bedankt voor uw antwoord. Zo is het inderdaad gelukt: -2cosx+4cos2x=0 cosx=2cos2x-1 -2cos2x+cosx+1=0 -2y2+y+1=0 D=12-4·-2·1=9 y=-1-√9/-4 V y=-1+√9/-4 y=1 V y=-1/2 Dus cosx=1 V cosx=-1/2 x=0+k·2$\pi$ V x=2/3$\pi$+k·2$\pi$ V x=4/3$\pi$+k·2$\pi$ Dus de functie heeft buigpunten voor: (k·2$\pi$;1), (2/3$\pi$+k·2$\pi$; -1/2), (4/3$\pi$+k·2$\pi$; -1/2). Volgens mij heb ik het nu alsnog niet goed gedaan, want in het antwoordenboek staat nog steeds iets anders :( Ik begrijp wel redelijk hoe je zo'n functie kan omschrijven naar een kwadratische, maar zijn er misschien truukjes om sneller te zien naar welke vorm je het om moet schrijven? Of moet je het gewoon proberen...
Julia
Leerling bovenbouw havo-vwo - vrijdag 22 mei 2015
Antwoord
Hallo Julia, Jouw eerste vergelijking is: -2cos(x)+4cos(2x)=0 Delen door 2 levert: -cos(x)+2cos(2x)=0 Dan gebruik je: cos(2x)=2cos2(x)-1 dus: 2cos(2x)=4cos2(x)-2 Hiermee krijg je: 4cos2(x)-cos(x)-2=0 Je vergat de factor 2 voor cos(2x) .... Dit levert geen 'mooie' waarde op voor cos(x) waaruit je x exact kan bepalen. weet je zeker dat je de opgave goed hebt overgenomen? Wat betreft jouw laatste vraag: het is inderdaad een beetje zoeken welke omschrijf-formule je kunt gebruiken om een functie te vereenvoudigen.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 23 mei 2015
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|