De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Coördinaten van een punt bepalen

 Dit is een reactie op vraag 75461 
Bedankt voor het antwoord!

Ik heb het nog eens nagekeken, en de opgave staat wel degelijk zo in het werkboek.

De oplossing is gegeven, de coördinaten van P zijn:

X = (572-11·√5·37)/121
Y = -3((572-11·√5·37)/121)+13

Tot deze oplossing kom ik helaas niet. Bij het zoeken van de bissectrices loopt het spaak.

Jasmin
2de graad ASO - dinsdag 28 april 2015

Antwoord

Dat is wel een vreemde manier van opschrijven. Bovendien hoort die 37 onder het wortelteken bij die 5, denk ik. Ik kom uit op:

$
\eqalign{
& P\left( {\frac{{52}}
{{11}} - \frac{{\sqrt {185} }}
{{11}},\frac{{3\sqrt {185} }}
{{11}} - \frac{{13}}
{{11}}} \right) \cr
& P(3,49;2,53) \cr}
$

...en volgens mijn tekening zou dat best kunnen kloppen!

q75463img1.gif

De vraag is dan natuurlijk hoe je dat doet...

De bissectrices:

$
\eqalign{
& \frac{{\left| {x - 3y - 1} \right|}}
{{\sqrt {1^2 + ( - 3)^2 } }} = \frac{{\left| {5x + 7y - 49} \right|}}
{{\sqrt {5^2 + 7^2 } }} \cr
& \frac{{\left| {x - 3y - 1} \right|}}
{{\sqrt {10} }} = \frac{{\left| {5x + 7y - 49} \right|}}
{{\sqrt {74} }} \cr
& \frac{{\left| {x - 3y - 1} \right|}}
{{\sqrt 5 }} = \frac{{\left| {5x + 7y - 49} \right|}}
{{\sqrt {37} }} \cr
& \sqrt {37} \left| {x - 3y - 1} \right| = \sqrt 5 \left| {5x + 7y - 49} \right| \cr
& \sqrt {37} x - 3\sqrt {37} y - \sqrt {37} = 5\sqrt 5 x + 7\sqrt 5 y - 49\sqrt 5 \vee ... \cr
& - 3\sqrt {37} y - 7\sqrt 5 y = - \sqrt {37} x + 5\sqrt 5 x + \sqrt {37} - 49\sqrt 5 \vee ... \cr
& y = \frac{{(5\sqrt 5 - \sqrt {37} )x + \sqrt {37} - 49\sqrt 5 }}
{{ - 3\sqrt {37} - 7\sqrt 5 }} \vee y = ... \cr
& y = \frac{{(5\sqrt 5 - \sqrt {37} )x + \sqrt {37} - 49\sqrt 5 }}
{{ - 3\sqrt {37} - 7\sqrt 5 }} \cdot \frac{{ - 3\sqrt {37} + 7\sqrt 5 }}
{{ - 3\sqrt {37} + 7\sqrt 5 }} \vee y = ... \cr
& y = \frac{{\left( {286 - 22\sqrt {185} } \right)x + 154\sqrt {185} - 1826}}
{{88}} \vee y = ... \cr
& y = \frac{{\left( {13 - \sqrt {185} } \right)x + 7\sqrt {185} - 83}}
{4} \vee y = ... \cr}
$

Ik heb (zoals je ziet) de 'andere bissectrice' na de absoluutstrepen even weggelaten. Ik ga de gevonden bissectrice snijden met de lijn $y=-3x+13$

$
\eqalign{
& \frac{{\left( {13 - \sqrt {185} } \right)x + 7\sqrt {185} - 83}}
{4} = - 3x + 13 \cr
& \left( {13 - \sqrt {185} } \right)x + 7\sqrt {185} - 83 = - 12x + 52 \cr
& \left( {25 - \sqrt {185} } \right)x = 135 - 7\sqrt {185} \cr
& x = \frac{{135 - 7\sqrt {185} }}
{{25 - \sqrt {185} }} = \frac{{52 - \sqrt {185} }}
{{11}} \approx 3,490... \cr}
$

...en dan nog even $y$ uitrekenen:

$
y = - 3\left( {\frac{{52 - \sqrt {185} }}
{{11}}} \right) + 13 = \frac{{3\sqrt {185} - 13}}
{{11}} \approx 2,527...
$

...en dat moet het dan zijn...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 28 april 2015



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3