|
|
\require{AMSmath}
Logaritmische vergelijking oplossen
Hallo Ik weet totaal niet hoe ik aan de volgende oefening moet beginnen, kunnen jullie mij helpen? xlog 2 + 2xlog 16 = 11/6 Bereken x
Mvg Louise
Louise
3de graad ASO - zaterdag 29 november 2014
Antwoord
Je zou als volgt te werk kunnen gaan. xlog(2) = log(2)/log(x) waarbij je rechts elk grondtal mag kiezen (wel positief en ongelijk 1) Als je voor grondtal 2 kiest, dan staat er 1/2log(x) Doe dit ook met 2xlog(16) = log(16)/log(2x) en kies opnieuw grondtal 2. Dan staat er 4/log(2x) waarna je log(2x) = log(2) + log(x) = 1 + 2log(x) kunt schrijven.
Probeer het nu eens verder aan te pakken.
MBL
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 29 november 2014
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|