De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Vereenvoudigen oefeningen grondformule

 Dit is een reactie op vraag 71601 
Klopt, heb dan ook een foutje overgeschreven .
Voor de eerste cosinus moest er 2 staan dus a+2b-b en dat dan vereenvoudigen.

Anke
2de graad ASO - zondag 8 december 2013

Antwoord

Dan krijg je $a+2b-b=a+b$. Voor de originele uitdrukking krijg je dan:

$
\sin ^4 x + \cos ^2 x
$

Je kunt nu met de verdubbelingsformules proberen er een mooie uitdrukking van te maken.

$
\cos 2a = \left\{ \begin{array}{l}
2\cos ^2 a - 1 \Rightarrow \cos ^2 a = \frac{1}{2}\cos 2a + \frac{1}{2} \\
1 - 2\sin ^2 a \Rightarrow \sin ^2 a = - \frac{1}{2}\cos 2a + \frac{1}{2} \\
\cos ^2 a - \sin ^2 a \\
\end{array} \right.
$

Je kunt dan sin2x en cos2x omschrijven naar uitdrukkingen met dubbele hoeken.

$
\begin{array}{l}
\sin ^4 x + \cos ^2 x = \\
\left( { - \frac{1}{2}\cos 2x + \frac{1}{2}} \right)^2 + \frac{1}{2}\cos 2x + \frac{1}{2} = \\
\frac{1}{4}\cos ^2 2x - \frac{1}{2}\cos 2x + \frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{2} = \\
\frac{1}{4}\cos ^2 2x + \frac{3}{4} = \\
\frac{1}{4}\left( {\frac{1}{2}\cos 4x + \frac{1}{2}} \right) + \frac{3}{4} = \\
\frac{1}{8}\cos 4x + \frac{1}{8} + \frac{3}{4} = \\
\frac{1}{8}\cos 4x + \frac{7}{8} \\
\end{array}
$

Dat is mooi wel...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 8 december 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3