De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oplossen van vergelijkingen

hallo,

kan iemand me helpen want ik snap deze opgave niet,
alvast bedankt om me te helpen

los op door de vergelijking uiteen te laten vallen

cos 3x = cos 2x-cos x

Andrie
3de graad ASO - donderdag 23 januari 2003

Antwoord

Hoi,
Breng eerst alles naar een kant:
cos(3x) - cos(2x) + cos(x) = 0

Pas Simpson toe op cos(3x) en cos(x)
2·cos(3x+x)/2cos(3x-x)/2 - cos(2x) = 0
2·cos(2x)cos(x) - cos(2x) = 0

Zet cos(2x) in de distributiviteit:
cos(2x)[2cos(x) - 1] = 0
cos(2x) = o <=> x=....
2cos(x) - 1 = 0 <=> x=.....

De oplossing laat ik aan jou over

Koen
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 23 januari 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3