De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vraagje over goniometrische functie

hallo,

ik had een vraagje over een voorbeeld die ik tegen kwam in dit website over het intergaal van een goniometrische functie:

de functie :

òsin(x).cos(x)dx= òsin(x)d (sin(x))=ò= 1/2sin2(x).

Mijn vraag is nu, waarom werd alleen maar één sin(x) geprimitiveerd?.

En ik had nog een vraagje:

een functie: 3cos(x)/(2+sin(x)).
Ik moest primitiveren, kwam dit uit: 3cos(x) Ln(2+sin(x))
Maar in mijn antwoordenboek stond: 3Ln(2+sin(x))

Maar ik snap het niet echt, hoe is het precies gedaan?

alvast bedankt
gr.

anna
Leerling bovenbouw havo-vwo - zondag 4 april 2010

Antwoord

1) Er wordt hier gebruik gemaakt van de zogeheten substitutiemethode. Als je sin(x) = t stelt, dan is cos(x)dx = dt en daarmee wordt de gegeven integraal ineens een stuk simpeler, namelijk òt.dt.
Deze integraal leidt tot de primitieve 1/2t2 en door t weer te vervangen door sin(x), krijg je het resultaat F(x) = 1/2sin2(x).
Het kan ook anders: je kent de formule sin(2x) = 2sin(x)cos(x). De functie die je integreren moet is dan dezelfde als f(x) = 1/2sin(2x) en dús is de primitieve direct gevonden: F(x) = -1/4cos(2x).
Probeer eens te laten zien dat de twee primitieven die je nu hebt in feite dezelfde zijn.

2) Als je nu t = 2 + sin(x) stelt, dan volgt daaruit dt = cos(x)dx en dús 3cos(x)dx = 3dt.
De gegeven integraal wordt daarmee ò3/tdt met als primitieve 3ln|t| en dus 3ln|2+sin(x)|
De modulusstrepen kun je hier overigens achterwege laten, want 2 + sin(x) is voor elke x tóch positief.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 4 april 2010



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3