De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Wortel uit 100-x²

Hoe kan je Ö(100-x2) integreren?

lachma
Student hbo - vrijdag 22 mei 2009

Antwoord

Hallo

Teken een rechthoekige driehoek met schuine zijde 10, en een rechthoekszijde x. De andere rechthoekszijde is dan Ö(100-x2)
Stel de hoek tegenover de rechthoekszijde x gelijk aan t.
Dan is Ö(100-x2) = 10.cos(t) en x = 10.sin(t)
Dus dx = 10.cos(t).dt
Na deze substituties heb je de integraal :
100.òcos2t.dt
Stel hierin : cos2t = 1/2.(cos(2t)+1)
Je vindt dan :
1/2.x.Ö(100-x2) + 50.Bgsin(x/10)
Lukt het zo?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 22 mei 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3