|
|
\require{AMSmath}
Vergelijking oplossen
Goedemiddag,
Dit is een opdracht die ik krijg bij mijn HBO-opleiding.
Stel 2x=y en los de vergelijking 22x - 3·2x + 2 = 0 op.
Zie hieronder mijn uitwerking. Kom alleen niet veel verder.
y2-3y+2=0 (x-2)(x-1)=0 x=2 of x=1 Dit komt niet overeen met het antwoord wat ik moet hebben. Kunnen jullie mij verder helpen? Dit zijn de antwoorden die mijn boek geeft (meerkeuze): A: x=0 B: x=1 C: x=2 D: x=0 of x=1
Alvast bedankt.
Natasc
Student hbo - vrijdag 14 december 2007
Antwoord
Hoi,
Als er x2 - 3x + 2 = 0 stond, dan klopte (x-2)(x-1) = 0 ook. Maar er stond y2 - 3y + 2 = 0 dus (y-2)(y-1)=0 en dus y = 2 of y = 1. Nu moet je die y weer omschrijven naar 2x. Dus 2x = 2 of 2x = 1 en dat klopt als x = 1 of x = 0.
Groetjes,
Davy.
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 14 december 2007
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|