De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De Moivre

Is z + 1/z = 2 cos $\alpha$ dan is zm + 1/zm = 2cos m$\alpha$
Hoe kan ik dit bewijzen?

hanne
Student Hoger Onderwijs België - dinsdag 19 juni 2007

Antwoord

De vergelijking z+1/z=2cos$\alpha$ heeft twee oplossingen: z1=cos$\alpha$+i·sin$\alpha$ en z2=cos$\alpha$-i·sin$\alpha$. Merk op dat z2=1/z1, dus het maakt niet uit welke je kiest. Gebruik nu de formule van De Moivre: z1m=cos(m$\alpha$)+i·sin(m$\alpha$) en z2m=cos(m$\alpha$)-i·sin(m$\alpha$).

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 20 juni 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3