De Moivre
Is z + 1/z = 2 cos $\alpha$ dan is zm + 1/zm = 2cos m$\alpha$ Hoe kan ik dit bewijzen?
hanne
Student Hoger Onderwijs België - dinsdag 19 juni 2007
Antwoord
De vergelijking z+1/z=2cos$\alpha$ heeft twee oplossingen: z1=cos$\alpha$+i·sin$\alpha$ en z2=cos$\alpha$-i·sin$\alpha$. Merk op dat z2=1/z1, dus het maakt niet uit welke je kiest. Gebruik nu de formule van De Moivre: z1m=cos(m$\alpha$)+i·sin(m$\alpha$) en z2m=cos(m$\alpha$)-i·sin(m$\alpha$).
kphart
woensdag 20 juni 2007
©2001-2024 WisFaq
|