De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Afstand van de snijpunten van een raaklijn en een cirkel

Hoi ik heb een vraaje,

De rechte a met a: x-y+m=0 snijdt de cirkel c(O,r) met vergelijking x2+y2=25 in A en B.

Bereken m als je weet dat |AB| = √2

Ik heb al gevonden:

We zetten de 2 vergelijkingen in een stelsel dus we krijgen.

S:x2+y2=25
y=x+m

$\Rightarrow$ x2+(x+m)2-25=0

$\Rightarrow$ 2x2+2mx+m2-25=0

2 Oplossingen: (-2m±√-4m2+200 )/4

Maar wat moet je nu doen? Ik gok dat het iets te maken heeft met de afstandsformule al weet ik niet welke twee coördinaten je hiervoor moet gebruiken je hebt immers telkens de x coördinaat van A en B maar niet de y coördinaat. Kan er iemand mij helpen?

Alvast bedankt!

Kevin
2de graad ASO - zaterdag 2 juni 2007

Antwoord

Beste Kevin,

Je bent goed op weg! Je hebt nu twee oplossingen voor de x-coördinaat, maar de bijbehorende y-coördinaten heb je ook.
Er geldt immers: y = x+m, gewoon m bijtellen om y te krijgen dus. Dan heb je twee punten P = (a,b) en Q = (c,d), de afstand d ertussen is:

d(P,Q) = √((a-c)2+(b-d)2)

Stel die afstand gelijk aan √2 en je vindt twee oplossingen voor m.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 2 juni 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3