De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Oppervlakte

 Dit is een reactie op vraag 50429 
Dag Oscar,
Is het niet beter de substitutie 1+4x2=u2 te nemen dan valt de Ö weg bij invullen .
Dus 1+4x2=u2 en 8xdx=2udu en xdx= 1/4udu en x2=(u2-1)/4
Invullend komt er dan :
ò2p1/4((u2-1)·udu)
=p/2ò(u3-u)du
=p/2(u4/4-u2/2)+C
Met de invoering van de aan "u" aangepaste grenzen is het nog even reken voor de uitkomst.
Groetjes,
RIK

Lemmen
Ouder - zondag 22 april 2007

Antwoord

Nee, ik vrees dat dat niet werkt.

het gaat om: ò2px2Ö[1+4x2]dx
met 1+4x2 = u2 en 8xdx = 2udu
verdwijnt de wortel en één van de overgebleven x-en.
De ander moet nog steeds vervangen: x = 1/4Ö(u2-1)
dus: ... = 1/8pòÖ(u2-1)u2du
Ik heb niet de indruk dat dit veel oplevert.

zouden we niet verder komen met een goniometrische functie?

Groet. Oscar

os
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 22 april 2007
 Re: Re: Oppervlakte 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3