De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oplossing Differentiaal vergelijking

Gegeven de inhomogene differentiaal vergelijking:

ý = t·y - t3

De algemene formule voor de oplossing is als het goed is:

ý + p(x)·y = r(x)

=

ý(t) = e^-h [ò(e^h)·r·dt + C] met h(t) = òp(t)·dt

We komen tot de oplossing:

ý = ty - t3 = ý - ty = -t3

h(t) = òp(t).dt = h(t) = -òt.dt = h(t) = -t2/2

=

y(t) = et2/2·[òe-t2/2·r·dt]

Nu willen wij gebruik maken van partiële integratie om het gedeelte tussen de haakjes op te lossen. Hier komen wij niet verder. Wie kan ons verder helpen

Martin
Student universiteit - woensdag 29 november 2006

Antwoord

dy/dt - t.y = -t3
Dit is van de vorm
dy/dt + p(t).y = q(t) met p(t)=-t en q(t)=-t3

de integrerende factor is I(t)=exp(òp(t)dt)

Dus I(t)=exp(-òtdt)=exp(-1/2t2)

de vgl kan nu herschreven worden als d(yI)/dt = Iq(t)
ofwel d/dt(y.exp(-1/2t2)) = -t3.exp(-1/2t2) Þ
y.exp(-1/2t2) = (t2+2).exp(-1/2t2) + C Û
y = (t2+2) + C.exp(+1/2t2)

groeten,
martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 29 november 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3