De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoe bereken je de tophoek van een regelmatige piramide

In een kubus verbindt men het middelpunt van het bovenvlak met de 4 hoekpunten van het grondvlak. Hierdoor ontstaat een regelmatige piramide. Hoe groot is de cosinus van de tophoek $\alpha$?

Chris
3de graad ASO - donderdag 2 november 2006

Antwoord

q47461img1.gif

Kubus ABCD.EFGH , P is het midden van AD, Q is het midden van het bovenvlak, R is het midden van BC.
Stel de ribben hebben lengte x.

Het is even de vraag wat je precies onder 'tophoek' verstaat.
Versta je daaronder de hoek AQB? of de hoek PQR? Of hoek AQC?

Je kunt hier wellicht de cosinusregel voor driehoeken bij gebruiken:
a2=b2+c2-2bc.cos$\alpha$

Indien het gaat om hoek AQB:
AB=x
AQ=√(x2+1/4x2+1/4x2)=√(3/2 x2)=x√(3/2)
BQ=...=x√(3/2)
dus cos$\alpha$ = (3/2 x2 + 3/2 x2 - x2)/2.(3/2 x2) =
= 2/3

indien het gaat om hoek PQR:
PR=x
PQ=√(x2+1/4x2)= x√(5/4)
RQ= ... = x√(5/4)
dus cos$\alpha$ = ((5/4)x2+(5/4)x2-x2)/2.(5/4 x2)
= 3/5

indien het gaat om hoek AQC: ....
nou jij!

groeten,

martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 3 november 2006
 Re: Hoe bereken je de tophoek van een regelmatige piramide 
Re: Hoe bereken je de tophoek van een regelmatige piramide



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3