De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Bewijs formule omtrek cirkel
Ik meen me te herinneren dat er een bewijs bestaat, waarbij je, in het eerste kwadrant, eerst de lengte van het lijnstuk tussen (1,0) en (0,1) berekent (Öcos2a+sin2a) en de uitkomst vermenigvuldigt met 4, waarmee je een eerste benadering van de omtrek van de eenheidscirkel hebt. Dan het lijnstuk tussen (1,0) en (1/4p,1/4p) x 8, enzovoort, waarvan je dan een limiet berekent voor 2~n. Hoe ziet dat bewijs er precies uit? AntwoordMisschien bedoel je zoiets als op Oppervlakte regelmatige n-hoek. Maar voor een 'bewijs' voor p is dat natuurlijk een beetje vreemd..., want sinus en cosinus hebben natuurlijk alles met p te maken... Maar de methode van het benaderen van p door middel van regelmatige veelhoeken is natuurlijk wel heel erg oud!
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|