De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoe bewijs ik dat mijn Lissajousfiguur een ellips is?

Ik moet bewijzen dat een bepaald Lissajousfiguur een ellips is.
Het Lissajousfiguur kan met de volgende parameterfuncties weergeven worden:

x(t) = sin (t - 1/4p)
y(t) = sin (t)

Ik weet dat de ellips niet met de vergelijking:

x2/a2 + y2/b2 = 1 weergeven kan worden

Blijkbaar wel met de vergelijking:

Ax2 + Bxy + cy2 + dx + ey + f = 0

Je kan x2/a2 + y2/b2 = 1 natuurlijk ook roteren over 1/4p, want de ellips lijkt 45° gedraaid te zijn, dan krijg je: (x cos 1/4p - y sin 1/4p)2 / a2 + (x sin 1/4p + y sin 1/4p)2 / b2 = 1
Deze vergelijking klopt wel voor de ellips als ik kan bewijzen dat de beide vergelijkingen die voor deze ellips overeenkomen aan elkaar gelijk zijn ben ik klaar, maar dat wil niet lukken. Please Help!

BRD
Leerling bovenbouw havo-vwo - woensdag 21 juni 2006

Antwoord

Je zou
x(t) = sin (t - 1/4·p)
kunnen uitwerken tot (zie Formulekaart):
x(t) = sin(t)·cos(1/4·p) - cos(t)·sin(1/4·p)
en met p = 1/2Ö2 hebben we dan:
x/p = sin(t) - cos(t) = sin(t) ± Ö(1 - sin2(t))
en dan:
x/p - y = ± Ö(1 - y2)
Kijk vervolgens eens wat je krijgt na kwadrateren van beide leden van deze relatie...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 24 juni 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3