Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Hoe bewijs ik dat mijn Lissajousfiguur een ellips is?

Ik moet bewijzen dat een bepaald Lissajousfiguur een ellips is.
Het Lissajousfiguur kan met de volgende parameterfuncties weergeven worden:

x(t) = sin (t - 1/4p)
y(t) = sin (t)

Ik weet dat de ellips niet met de vergelijking:

x2/a2 + y2/b2 = 1 weergeven kan worden

Blijkbaar wel met de vergelijking:

Ax2 + Bxy + cy2 + dx + ey + f = 0

Je kan x2/a2 + y2/b2 = 1 natuurlijk ook roteren over 1/4p, want de ellips lijkt 45° gedraaid te zijn, dan krijg je: (x cos 1/4p - y sin 1/4p)2 / a2 + (x sin 1/4p + y sin 1/4p)2 / b2 = 1
Deze vergelijking klopt wel voor de ellips als ik kan bewijzen dat de beide vergelijkingen die voor deze ellips overeenkomen aan elkaar gelijk zijn ben ik klaar, maar dat wil niet lukken. Please Help!

BRD
Leerling bovenbouw havo-vwo - woensdag 21 juni 2006

Antwoord

Je zou
x(t) = sin (t - 1/4·p)
kunnen uitwerken tot (zie Formulekaart):
x(t) = sin(t)·cos(1/4·p) - cos(t)·sin(1/4·p)
en met p = 1/2Ö2 hebben we dan:
x/p = sin(t) - cos(t) = sin(t) ± Ö(1 - sin2(t))
en dan:
x/p - y = ± Ö(1 - y2)
Kijk vervolgens eens wat je krijgt na kwadrateren van beide leden van deze relatie...

dk
zaterdag 24 juni 2006

©2001-2024 WisFaq