De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Het bewijs van een formule uit de fibonacci-rij

Ik probeer al een tijdje om de volgende formule uit de fibonacci-rij te bewijzen:
(Fn)2 + (Fn+1)2 = F(2n+1).

Veel andere formules uit de rij van fibonacci heb ik al wel bewezen en dat allemaal zonder de formule van Binet te gebruiken, ik vroeg me af of ik deze formule ook niet kan bewijzen zonder de formule van Binet of een dergelijke formule te gebruiken.
Als de formule nou wel bewezen moet wporden met de formule van Binet zou je me dan het eerstedeel van het bewijs kunnen geven want met de formule van Binet ben ik tot nu toe ook niet ver gekomen.

Ricard
Leerling bovenbouw havo-vwo - donderdag 20 april 2006

Antwoord

Hoi,

Je zou dit kunnen bewijzen m.b.v. volledige inductie en de formule van Binet.
Voor n = 1 klopt het, triviaal. Stel dat 't voor n klopt, te bewijzen dat het ook voor n + 1 klopt. Dus bewijzen (F(n+1))2 + (F(n+2))2 = F(2n+3).
q45029img1.gif
Dus het klopt ook voor n+1, dus voor alle natuurlijke n.
Hierboven heb ik gebruik gemaakt van de formule van Binet F(n) = j^n - (-j)^(-n)/Ö(5).
Indien een stap niet duidelijk is, reageer dan op dit antwoord.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 20 april 2006
Re: Het bewijs van een formule uit de fibonacci-rij



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3