De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Het midden van een koorde van een parabool

Geachte heer/mevr
Hoe kan je bewijzen dat een lijnstuk bepaal door 2 punten van een parabool, dus de koorde van de parabool en een verschillende tweede koorde nooit hetzelfde midden hebben? Ik weet ni goe hoe er aan te beginnen...
Bedankt voor de moeite!

mieke
Iets anders - woensdag 11 september 2002

Antwoord

Beste,

Stel je parabool voor door y=ax2. Twee willekeurige punten zijn dan P(p,ap2) en Q(q,aq2). Hun midden is dan M(x,y)=((p+q)/2,a(p2+q2)/2).
We tonen aan dat P en Q eenduidig bepaald zijn door M. Als een ander stel punten P' en Q' dus eenzelfde midden M hebben, dan moeten P en Q samen vallen met P' en Q'.
Welnu, uit x=(p+q)/2 halen we: 4.x2=p2+2.p.q+q2. We hebben ook y = a(p2+q2)/2 en dus: 2.y/a = p2+q2. Door deze vergelijkingen van elkaar af te trekken krijgen we een uitdrukking voor p.q. We hebben dus een uitdrukking voor p+q en p.q. Hiermee zijn p en q eenduidig bepaald (x2-S.x+P=0). QED.

Groetjes,

Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 11 september 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3