De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Re: Het oplossen van gebroken vergelijkingen

 Dit is een reactie op vraag 42844 
hi ,tom
kunt u dit even checken, ik heb het gemaakt aan
de hand van een vroeger voorbeeld
maar ik weet niet zeker of het goed gedaan is
x(x-1)=x(x^2+2x+3)
x^2-x=x^3+2x^2+3x
x^2-x-x^3-2x^2-3x=0 alles delen door x geeft
-x2-2x-3=0
met abc formule
D=(-1)^2-4(-1)*(-3)
1-12= -11
D is negatief dus oplossen met complexe getallen
x1=[-1*-11+^(-1*-11]/2*1
[11+^(-1*11]/2
opgave b heeft al uitkomst ^6
p.s.
bedankt sam welke browser moet je gebruiken om de onderstaande tekens goed te krijgen.ik krijg nameleijk voor de wortel ^

sam
Leerling bovenbouw havo-vwo - donderdag 12 januari 2006

Antwoord

Beste Sam,

In mijn vorig antwoord zei ik je nog dat je uitwerking toen goed was tot aan -x2-x-3 = 0 en nu heb je '-2x' ipv '-x', je hebt dus een rekenfout gemaakt. De discriminant is inderdaad negatief maar ik zie in jouw oplossing nergens een complex getal staan.

Er geldt nu: x1,2 = (-b±iÖ(4ac-b2))/(2a)

Blijkbaar heb je m'n vorig antwoord niet grondig gelezen, want er ontbreekt nog een (reële) oplossing! Hier zeg je opnieuw dat je alles deelt door x, maar dat mag niet zomaar (zie mijn vorig antwoord)

Voor opgave b ben je de negatieve wortel nog vergeten, de oplossingen zijn ±Ö6.

Wat de browsers betreft: voor mij werkt het onder firefox en internet explorer zou het ook moeten doen.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 12 januari 2006
 Re: Re: Re: Re: Het oplossen van gebroken vergelijkingen 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3