Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 42844 

Re: Re: Re: Het oplossen van gebroken vergelijkingen

hi ,tom
kunt u dit even checken, ik heb het gemaakt aan
de hand van een vroeger voorbeeld
maar ik weet niet zeker of het goed gedaan is
x(x-1)=x(x^2+2x+3)
x^2-x=x^3+2x^2+3x
x^2-x-x^3-2x^2-3x=0 alles delen door x geeft
-x2-2x-3=0
met abc formule
D=(-1)^2-4(-1)*(-3)
1-12= -11
D is negatief dus oplossen met complexe getallen
x1=[-1*-11+^(-1*-11]/2*1
[11+^(-1*11]/2
opgave b heeft al uitkomst ^6
p.s.
bedankt sam welke browser moet je gebruiken om de onderstaande tekens goed te krijgen.ik krijg nameleijk voor de wortel ^

sam
Leerling bovenbouw havo-vwo - donderdag 12 januari 2006

Antwoord

Beste Sam,

In mijn vorig antwoord zei ik je nog dat je uitwerking toen goed was tot aan -x2-x-3 = 0 en nu heb je '-2x' ipv '-x', je hebt dus een rekenfout gemaakt. De discriminant is inderdaad negatief maar ik zie in jouw oplossing nergens een complex getal staan.

Er geldt nu: x1,2 = (-b±iÖ(4ac-b2))/(2a)

Blijkbaar heb je m'n vorig antwoord niet grondig gelezen, want er ontbreekt nog een (reële) oplossing! Hier zeg je opnieuw dat je alles deelt door x, maar dat mag niet zomaar (zie mijn vorig antwoord)

Voor opgave b ben je de negatieve wortel nog vergeten, de oplossingen zijn ±Ö6.

Wat de browsers betreft: voor mij werkt het onder firefox en internet explorer zou het ook moeten doen.

mvg,
Tom

td
donderdag 12 januari 2006

 Re: Re: Re: Re: Het oplossen van gebroken vergelijkingen 

©2001-2024 WisFaq