De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Integralen

Mijn probleempje:

de integraal tussen 0 en 1 van ((bgtan√x)/ √x)

Ik heb eerst u = √x dus du = 1/2√x
Dan kom ik de integraal uit van 1/2 (bgtan u du)

Met partieel kom ik dan uit:
bgtang u . u. 1/2 - ln (u2+1)

Als ik dan mijn punten invul, krijg ik een negatieve oplossing

Marijk
3de graad ASO - zondag 20 november 2005

Antwoord

Uit u=√x volgt x=u2, dus dx=2udu.
Dus $\int{}$(bgtan(√)/√x)dx gaat dan over in $\int{}$2bgtan(u)du
Partieel primitiveren levert dan: 2u×bgtan(u)-$\int{}$2u/(1+u2)du=
2u×bgtan(u)-ln(1+u2)
Terug substitueren van u=√x levert dan 2√x×bgtan(√x)-ln(1+x).

Wat je daarna invult kan ik niet controleren op correctheid.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 20 november 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3