De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Poolcoordinaten

 Dit is een reactie op vraag 41525 
hoi,

ik heb eigenlijk mijn vraag niet goed gesteld.Ik dacht dat r'=r-r^3(cos^4w+sin^4w)
w'=1+r^2*cosw*sinw(cos^2w-sin^2w)
nog verder herleid konden worden en dacht daarom dat ik nog niet de juiste uitdrukkingen had.

Ik wil nl. laten zien dat voor alle e0, r'0 op de cirkel r=sqrt2+e en r'0 op de cirkel r=1-e.
Bij een eenvoudige uitdrukking voor r'en w' (alleen in termen van r resp. w)lukt mij dat in het algemeen maar deze uitdrukkingen zijn vrij ingewikkeld en ik weet niet hoe ik bovengenoemde kan bepalen.Kunt u mij hiermee verder helpen?

Groeten,
Viky

viky
Student hbo - zondag 13 november 2005

Antwoord

Ga zelf even na dat 1/2cos^4w+sin^4w1 voor alle w. Hieruit volgt dat r-r^3r'r-r^3/2. Met deze ongelijkheden kun je je probleem oplossen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 15 november 2005
 Re: Re: Re: Poolcoordinaten 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3