De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Op hoeveel manieren kun je 16 unieke knikkers verdelen over 8 knikkerpotjes?

 Dit is een reactie op vraag 31217 
Zeer klassiek probleem. Ook vaak geformuleerd als: op hoeveel verschillende manieren kun je 16 eieren (die niet te onderscheiden zijn) kleuren met 8 verschillende kleuren.

Oplossing
Elke verdeling kun je beschrijven met 16 k'tjes (k van knikker) en 7 s'jes (van schot)

voorbeeld
kkskskkkkkkkkkkkkksssss

betekenis
2 knikkers in bak 1, 1 knikker in bak 2, 13 in bak 3 en in rest geen

Het aantal oplossingen komt dus neer op het plaatsen van 7 symbolen s in een reeks van 16+7 = 23 symbolen

oplossing 23 boven 7 = 245157

Als er in elke bak een knikker moet leggen dan is het antwoord uiteraard kleiner namelijk

15 boven 7 = 6435

De steller van de vraag mag het verder zelf generaliseren

Jan Essers

Jan Es
Docent - donderdag 23 december 2004

Antwoord

Nee, Jan, de knikkers zijn UNIEK, dus WEL van elkaar te onderscheiden.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 23 december 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3